A comparative analysis of Cs-137 soil migration over a thirty-six years study period (1987-2023) :
Experimental measurements vs compartment model predictions

Alexandros Clouvas, Ioannis Kaissas, Stelios Xanthos

HNPS 2023

Radioactivity spread out from Chernobyl in 1986

Total Released Activities*:

- Cs-137 $38 \mathbf{1 0}^{15} \mathbf{B q}$
- Cs-134 $\mathbf{1 8} \mathbf{1 0}^{\mathbf{1 5} \mathbf{B q}}$
- I-131 $260 \mathbf{1 0}^{15} \mathbf{B q}$
- Sr-90 $810^{15} \mathbf{~ B q}$
- Pu-241 $5 \mathbf{1 0}^{15} \mathbf{B q}$
*According to former Soviet Government

Cs-137 deposition in Greece

γ-spectrum with High Purity Ge detector

- Cs-137 with $\mathrm{T}_{1 / 2}=30.2 \mathrm{yrs}$
- Cs-134 with $\mathrm{T}_{1 / 2}=2.7 \mathrm{yrs}$
- I-131 with $T_{1 / 2}=8.0$ days

The ratio of the activities of Cs-137 and Cs-134 (backdated to May 1986) in soil, the first years after the accident when the latter was measurable, was found to equals approximately 2.

Considering, :

- that the same ratio 2 was measured in air filters immediately after the arrival of the radioactive cloud in Greece, and
- that Cs-134 in soil, is only due to the Chernobyl accident (do not released by explosions of nuclear weapons),
we can assume that practically all Cs-137 in soil is due to the Chernobyl accident, i.e. nuclear weapon tests fallout is negligible in Greece.

Activity Concentration of Cs-137 vs Depth

The Nuclear Technology Laboratory of Aristotle University of Thessaloniki has conducted measurements on undisturbed soil located at the university farm, at the east-side of Thessaloniki.
On undisturbed soil, one can observe the kinematics of Cs -137, as it is moved slowly from the surface to the deeper layers of soil.
The non-disturbance of the particular area can be proven through the years due to the controlled agricultural activities in the university farm. No agricultural activities have been performed since 1986.

Measurement Results - Comparing 1987 and 2023

Cs-137 concentration backdated for the time of Chernobyl accident (Bq/kg)

- Through the years Cs-137 migrates in deeper layers
- In the next years, the maximum concentration will swift from the $\mathbf{5 c m}$ layer to the $\mathbf{1 0} \mathbf{~ c m}$ layer
- At deeper layers, the concentration ratio \mathbf{R} increases through the years

Compartment Model

\mathbf{z} : depth of soil layer (cm)
$\mathbf{T}(\mathbf{z})$: Cs-137 activity to units of surface and depth ($\mathrm{Bq} / \mathrm{m}^{3}$)
$\mathbf{R}_{\mathbf{Z}}$: Ratio of the $\mathrm{T}(\mathrm{z})$ of a certain depth to the total T of all the layers

$$
\mathrm{R}_{\mathrm{Z}}=\frac{\mathbb{T}^{Z} T{ }^{T}(z)^{d}}{\int_{0}^{30} T(z) d}
$$

$\frac{d R_{5}}{d t}=-k R_{5}$

$$
\begin{aligned}
& \frac{d R_{10}}{d t}=k R_{5}-k R_{10} \square R_{10}(t)=\left[k R_{5}(t=0) t+R_{10}(t=0)\right] e^{-k t} \\
& \frac{d R}{d t}=k R_{10}-k R_{15} \square R_{15}(t)=\left[\frac{k^{2} R_{5}(t=0) t^{2}}{2}+k R_{10}(t=0) t+R_{15}(t=0)\right] e^{-k t}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d R_{20}}{d t}=k R_{15}-k R_{20} \\
& \frac{d R_{25}}{d t}=k R_{20}-k R_{25} \\
& \frac{d R_{30}}{d t}=k R_{25}-k R_{30} \quad \square R_{20}(t)=\left[\frac{k^{3} R_{5}(t=0) t^{3}}{6}+\frac{k^{2} R_{10}(t=0) t^{2}}{2}+k R_{15}(t=0) t+R_{20}(t=0)\right] e^{-k t} \\
&
\end{aligned}
$$

A simple compartment model used to simulate the distribution of Cs-137 in the soil through time. Each layer of soil is represented by a compartment.

Each differential equation considers the Cs- $\mathbf{1 3 7}$ input from above and the $\mathbf{C s} \mathbf{- 1 3 7}$ output to the next deeper layer.
k stands for transfer rate between the compartments and its units are years ${ }^{-1}$
The simplicity lays on the use of the same \mathbf{k} for every different differential equation.

It is acknowledged that \mathbf{k} is not the same between consecutive soil layers and increases with soil depth, implying that diffusion is the main mechanism of migration of Cs-137..

> ... but in this way, the model can be generalized well to new observations, even if it does not excessively match the data.

Compartment model

Considering diffusion as the main mechanism of Cs-137 migration, k increases with depth (see Fick's law).

Such a model do not align with the observed outcomes.
This suggests that diffusion may not be the primary migration mechanism over long periods. Factors such as advection or other transfer processes may be more influential in the long-term migration of Cs-137.

$$
\begin{aligned}
& \frac{d R_{5}}{d t}=-k_{1} R_{5} \\
& \frac{d R_{10}}{d t}=k_{1} R_{5}-k_{2} R_{10} \square R_{5}(t)=R_{5}(t=0) e^{-k t} \\
& \left.R_{10}(t)=\left(\frac{k_{1} R_{5}(t=0)}{k_{2}-k_{1}}\right)\left(e^{-k_{1} t}-e^{-k_{2} t}\right)+R_{10}(t=0)\right] e^{-k_{2} t}
\end{aligned}
$$

Deposition of Cs-137 (Bq/m²) in 2023 and 1986

$$
\mathrm{A}(\mathrm{t}=36.6 \mathrm{y})=136 \frac{B q *}{\mathrm{Kg}} 1300 \frac{\mathrm{Kg} *}{\mathrm{~m}^{3}} 0.05 \mathrm{~m}=8.8 \frac{\mathrm{kBq}}{\mathrm{~m}^{2}}
$$

Backdated to the time of Chernobyl accident in 1986:

$$
\mathrm{A}_{0}=\mathrm{A}(\mathrm{t}=36.6 \mathrm{y}) * 2^{\frac{36.6}{30.2}}=20.2 \frac{\mathrm{kBq}}{\mathrm{~m}^{2}}
$$

This value matches with the total deposition at the area, which was independently measured to be about $\mathbf{2 7 . 3} \mathbf{~ k B q} / \mathbf{m}^{2}$ during the first year after the Chernobyl accident

Just to Relax

Measuring U-238 and Th-232 series and K-40 yields the relevant concentrations for:
${ }^{226} \mathrm{Ra}=13 \mathrm{~Bq} / \mathrm{kg}$
${ }^{228} \mathrm{Ac}=16 \mathrm{~Bq} / \mathrm{kg}$
${ }^{40} \mathrm{~K}=228 \mathrm{~Bq} / \mathrm{kg}$
Considering their uniform distribution on the soil and the factors of Lemercier studies for the conversion of activity to equivalent dose rate @ 1m above the ground:

Equivalent dose rate for ${ }^{226} \mathrm{Ra}=7.33 \mathrm{nSv} / \mathrm{h}$
Equivalent dose rate for ${ }^{232} \mathrm{Th}$ series $=11.98 \mathrm{nSv} / \mathrm{h}$
Monte-Carlo simulations of the ${ }^{40} \mathrm{~K}$ distribution and the $\mathrm{Cs}-137$ deposition yields:
Equivalent dose rate @ 1 m above the ground for ${ }^{40} \mathrm{~K}=10.23 \mathrm{nSv} / \mathrm{h}$
Equivalent dose rate @ 1 m above the ground for Cs-137 = $4.56 \mathrm{nSv} / \mathrm{h}$
Total equivalent dose rate @ 1 m above the ground $=34.1 \mathrm{nSv} / \mathrm{h}$.

Contribution of Cs-137 and the naturally occurring radioisotopes to the Ambient Dose Equivalent Rateミعı ${ }^{\text {á }}$ OopíouK-40Cs-137 Ra-226

